\begin{tabbing} ecl{-}es{-}act(${\it es}$;$m$;$x$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=ecl\_ind($x$;$k$,${\it test}$.$\lambda$$e_{1}$,$e_{2}$. False;$a$,$b$,${\it aa}$,${\it ab}$.$\lambda$$e_{1}$,$e_{2}$. ${\it aa}$($e_{1}$,$e_{2}$)\+ \\[0ex]$\vee$ $\exists$$e$$\in$($e_{1}$,$e_{2}$].ecl{-}es{-}halt(${\it es}$;$a$)(0,$e_{1}$,pred($e$)) \& ${\it ab}$($e$,$e_{2}$);$a$,$b$,${\it aa}$,${\it ab}$.$\lambda$$e_{1}$,$e_{2}$. ${\it aa}$($e_{1}$,$e_{2}$) \\[0ex]\& $\forall$$n$$\in$ecl{-}ex($b$).$\forall$$e$$\in$[$e_{1}$,$e_{2}$).$\neg$ecl{-}es{-}halt(${\it es}$;$b$)($n$,$e_{1}$,$e$) \\[0ex]$\vee$ ${\it ab}$($e_{1}$,$e_{2}$) \& $\forall$$n$$\in$ecl{-}ex($a$).$\forall$$e$$\in$[$e_{1}$,$e_{2}$).$\neg$ecl{-}es{-}halt(${\it es}$;$a$)($n$,$e_{1}$,$e$);$a$,$b$,${\it aa}$,${\it ab}$.$\lambda$$e_{1}$,$e_{2}$. \\[0ex]${\it aa}$($e_{1}$,$e_{2}$) \& $\forall$$n$$\in$0.ecl{-}ex($b$).$\forall$$e$$\in$[$e_{1}$,$e_{2}$).$\neg$ecl{-}es{-}halt(${\it es}$;$b$)($n$,$e_{1}$,$e$) \\[0ex]$\vee$ ${\it ab}$($e_{1}$,$e_{2}$) \& $\forall$$n$$\in$0.ecl{-}ex($a$).$\forall$$e$$\in$[$e_{1}$,$e_{2}$).$\neg$ecl{-}es{-}halt(${\it es}$;$a$)($n$,$e_{1}$,$e$);$a$,${\it aa}$.$\lambda$$e_{1}$,$e_{2}$. \\[0ex][$e_{1}$;$e_{2}$]$\sim$([$x$,$y$].\=ecl{-}es{-}halt(${\it es}$;$a$)\+ \\[0ex](0 \\[0ex],$x$ \\[0ex],$y$))$\ast$[$x$,$y$].\=${\it aa}$\+ \\[0ex]($x$ \\[0ex],$y$);$a$,$n$,${\it aa}$.\=if $m$=$_{2}$$n$$\rightarrow$ ecl{-}es{-}halt(${\it es}$;$a$)(0)\+ \\[0ex]else ${\it aa}$ fi;$a$,$n$,${\it aa}$.${\it aa}$;$a$,$l$,${\it aa}$.${\it aa}$) \-\-\-\- \end{tabbing}